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PREFACE

Inventory, maintenance, and queuing models are the

lifeblood of Air Force logistics research. Markov renewal

programs are imbedded in most of those that are amenable

to analytic treatment. When they are explicitly recognized,

the analysis is often streamlined. Contrary to usual

practice, we do not make the (generally unrealistic)

assumption that all parameters of the model are known.

However, information about them is acquired sequentially

by observing the reward stream, transition times, and

successive states visited, which depend on the policy

employed.

For maximizing long-run average reward, we find a

history-remembering, adaptive policy that does as well

as we could if we knew all the parameters.
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SUMMARY

We recast a class of infinite--state, infinite-action

Markov renewal programs with unknown parameters as one-state

programs with actions corresponding to stationary policies

in the original program. Under suitable conditions we find

an adaptive (nonstationary) optimal policy in the sense of

maximizing long-run expected reward per unit time.
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ADAPTIVE POLICIES FOR MARKOV RENEWAL PROGRAMS

1. INTRODUCTION

Finite-state, finite-action Markuv renewal programs

with all parameters known were defined by Jewell in [9].

We study the infinite-state, infinite-action analog with

the parameters unknown. One-step reward distributions,

transition time distributions, and transition probabilities

are unknown a priori. Beginning in state i c S, the decision-

maker takes action k E A., moves to state j with probability

kk
PIJ ,and given that he moves to j, receives reward j during

a transition lasting T k after which he takes another action,

has a transition, etc. His objective is to find a policy

which maximizes his expected long-run average reward. A

policy (61, 62, ... ) is a collection of functions mapping

states into actions. At the n-th decision (transition),

n (i): i - Ai where 6n may depend on the history of the

process prior to n. A stationary policy 6 is of the form

(6, 6, ... ); it uses the same function for each decision and

thus cannot be history-remembering. Define A to be the set

of all stationary policies. Making certain assumptions, we

construct a nonstationary adaptive policy which does as well

as any stationary policy in maximizing expected reward per..._

unit time no matter what values the unknown parameters have.

Thus, using the average reward rate criterion, our policy

is optimal whenever a stationary optimal or stationary
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E-optimal policy exists. Lippman [10] shows the existence

of a stationary E-optimal policy under essentially our

assumptions, although in general a stationary optimal policy

need not exist. Similar results are unattainable in the

general multichain case because there is no way to be sure

of optimizing the action in a transient state when the action

determines which absorbing chain will be entered. A stationary

optimal policy exists in the finite-state, finite-action case

(Fox [5]), and sufficient conditions for existence have been

given (Fox [61) in the finite-state, infinite-action case.

Mallows and Robbins [12] give results analogous to

ours in the discrete-time, one-state case. Part of our

argument is an adaptation of theirs. Banos [I] Lind Shubert

[161 treat similar problems from game theoretic amd statis-

tical decision theoretic viewpoints, respectively.

i
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2. THE MAXIMIZING POLICY

Suppose a stationary policy 8 e a is always used.

For any fixed path let

R 6(t) - total reward received up to cime t.

The strong law of large numbers together with a standard

renewal theory argument imply that

lir 1 R (t)
U t''W

converges to a constant with probability 1. Thus the

expected gain rate associated with 6 is defined as

1 6g lim E[1(K )

Let g - sup g . Using the adaptive policy for any fixed

path, let

R(t) - total reward received up to time t.

Under the assumptions given below we show that the rewards

from the adaptive policy satisfy

(1) Pjlim t-I R(t) -g*] - I.

It will then follow that



-4-

(2)im trn _1 E[R(t))

The assumptions:

1. There is an a priori known countable set of stationary

policies A C A such that

supgX: X E A] -..

2. For each state, the expectation and the variance of

the time and reward until state 1 is next reached Is

uniformly bounded over A.

3. For each state, the expected time to return to state 1

is uniformly bounded away from 0 over A.

Note that uniform bounds over S x A are not needed.

our proof uses assumptions 1, 2, and 3 directly. In [1.51

it is shown-that assumptions 2 and 3 on A rather than A

imply assumption 1, thus effectively eliminating the need

for assumption 1.

Alternatively, con~ditions on the transition matrices,

one-step reward distributions, and one-step time distri-

butions can-be given which imply assumptions 2 and 3.

They are:

2'. The means and variances of the one-step times

and rewards are uniformly bounded from above over actions

and states.

i________________________________
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3'. The mean of the one-step times is uniformly

bounded away from zero over states and actions.

4'. The semi-Markov process associated with any

stationary policy is regular and the mean and variance of

the time to get to state I is uniformly bounded over S x A.

To ensure that our adaptive policy will concentrate

with probability 1 on the high gain rate stationary policies,

only policies in A are tried and each policy in A is tried

infinitely often. The basic unit used in defining our

policy is the 'state 1-to--state I cycle. Within each

state i-to-state I cycle the same stationary policy is

used.

Beginning in the initial state some fixed stationary

policy is applied until state I is reached. From this

point forward we have a one-state problem since policy

choices are -nly made at state.l. Following Mallows and

Robbins [12] our strategy specifies a sequence of positive

integers which number the forced-choice cycles in which

predetermined stationary policies are applied. Let

sill, sl2, ... be any increasing sequence of positive integers

with sll m 1. Let s21, s 2 2 , ... be a second disjoint sequence

with s31, s321 ... being a third sequence disjoint from the

first two, and so on. If for the n-th cycle n - s5t, for

some 6, t we use stationary policy 6 for the n-th cycle;

otherwise we choose the stationary policy with the leading



observed reward rate. The observed reward rate for policy

6 at time t is given by

R6 (tRR (t) = B (t)

where R (t) is the total reward received and B (t) is the

total time spent prior to t while 6 was applied. The

relationship is defined only for those 6 which have been

applied in a forced-choice cycle prior to t. Let s(n) be

the total number of forced choices up to the n-th cycle,

i.e., the number of integers s,, which are < n. We choose

the s,, so that

n=l ~

A choice which satisfies this is s(n) A" log n.

In sampling policies directly rather than actions,

we do not fully utilize all information since each action

is associated with many different policies. We do not

know a general remedy, but in Section 4 we give a modified

policy for the finite case that uses information more

efficiently.

SI I
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3. PROOF OF OPTIMALITY

Let the random variables U and V be, respectively,

reward and time for a state 1-to-state 1 cycle using 8. In

view of assumption 2, U and V6 have expectations and

variances uniformly bounded over A. Call this bound H.

The policy we use essentially reduces the original problem

to a one-state problem, where the transition times need

not be constants. As in [12], we can define a nondecreasing

sequence (c n such that

-2(3) cn >0, Xcu <, nf-s(n) %-.0.
nn

A particular choice which can be shown to satisfy (3) is

c(n) -S(n R( werein).Z0 Denote the distribution
of U6 by F6. By the Markov inequality

F (-c) < c 2  8 e .

Hence, if Dn is the policy used on the n-tb cycle and Un

is the corresponding reward, then

P _.? < -c W E P(Dn - 6)F(-c)< Hcn-

and so Z P[Un < -c.) converges by (3). By the Borel-Cantelli
n

leama, Un _ -cn only finitely often w.p.1; so w.p.1 there

is an N, such that Un > -cn for all n > NI. A similar

I •
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argument shows that there is an N2 such that w.p.1

]Unl< c n and Vn < cn. Hence, by (3), we can neglect the

contribution of the forced-choice cycles to the overall

reward and time.

At time t, define fl(t• as the number of forced choices

prior to time t and f 2 (t)as the number of different policies

used on free choices prior to t. Let p(t) - the number of

different policies used prior to time t. Then

fi(t) > p(t) > f2(t).

Define the last free-choice cycle prior to t for a policy

6 as the last cycle, if any, for which policy 6 was chosen

as the leader. By the above argument the contribution of

the last free-choice cycles can be neglected. Assumption 2

implies that the time and rewards before reaching

state I for the first time can also be neglected.

Indexing consecutive cycles by m and excluding the

time and rewards before reaching state I for the first

time we define

V. = time to complete i-tb cycle,

8 • time to complete i-th cycle if policy 8 is used,
1 = 0 otherwise.

B(m) -2 V.
i-I I

m MB• (m) ,=z Vi.
I=,1
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Ui3 Ui R(m), R (m) are defined similarly for the reward

sequence. Let

N ((m) - the number of the first m cycles which

use policy 6.

Fix a policy a c A;

S(M) e.m . koR(m)lso(m) .
B (m) Ba(m)/No(m)

By the SLLN the numerator and denominator converge to a

constant w.p.l as NO (m) - -. Since the union of two null

sets is null and e (m) - - as m. - , the advanced calculus

result that the limit of a ratio is the ratio of the limits

yields

(4) lira RI(m) - go w.p.l.

This is a special case of a result of Pyke and Schaufele

[14, Theorem 5.1]. Strictly speaking, the fact that the

constant is go depends on the lemma proved later that

relates cycles and continuous time. Using the fact that

policy a is applied infinitely often (S.1, So21 ... ) in
forced-cbhoice cycles, we can choose m large enough to

guarantee in advance that NO (m) > N for any fixed N. Thus

fixing cI, c2 > 0, choose mo0 such that

U __ z



-10-

SPI'(m) > go- E2 for all m > mol > 1 el,

from the above SLLN argument.

Let r be the set of policies used in free choices

for m > mo. For Y c r and m > m., define ZY(m) as the

largest cycle index < m where y was freely chosen. From

the definitions,

R 5( 6 (m-a1( 6(m

for all a e A.

By earlier arguments and neglecting the contributions

from policies not used after cycle mo,

R(m) =Z Ry(ty(m) - 1)/B(m) + 0 (1),

where the last term goes to 0 w.p.l as m •. Thus,

R(m) > Z V(ty(m) - I)BY(t.(m) - l)fB(m) + O (1)

> (g 6 - •2) By(tL(m) - l)iB(m)] + Op (1)

> go _ 2 + op(1),

since the term in square brackets goes to 1 w.p.1 as

m - , and as E2 was arbitrary,
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mli inf (r(m) > ga w.p.1.

Since a was arbitrary and a denumerable union of null sets

is null,

(5) P(li inf I(m) > g*)

Now 1(m) - g6 w.p.1 as m - 0 so that

(6) P(lii sup An(m) < g*) - 1,

since A(m) is a weighted average of the 16(m). Thus we

have proved

(7) P(lim "I(m) - g*)

To complete the proof of (1) we need a lemma to allow

us to move from indexing by number of transitions to

indexing by time.

LEKKA.

(a) ii. sup B <.. w.p~l.
m

(b) lim inf >0 w.p.l.

Proof. For the proof of the lemna a more abstract

representation of the process is required. The process

can be viewed as a sequence of functions on an underlying

measure space. See [11] or [15].

I ,-.
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Define the 0-field

LI iL

OCDJ, • V 1"v, tJl; i - i, 2 .,j
I

where a(,] means the smallest a-field over which [ is
measurable. Thus E(Vi0I 1_,) is the expected time to
complete the i-th cycle given the previous history of the
process while E(VilDi) is the expected time to complete
the i-th cycle given the value of Di, the stationary policy
used. Note that ai L J-1" D i is measurable over aJ-l' and

E (vj Iaj-1) - E(V ID.).

Clearly,
m m

B(in) - Z V,!J[- VI. - E(vilDi)] + iZI E(vil~i).

Thus, since E(VjiDi) is bounded away from 0 and m by
assumptions 2 and 3, it suffices to show that the first
term is negligible,

E[(Vi _ E(VilDi)) ID] 0

and D

Z E (V1 -E(vDi))

_< R i 1/d <



I
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By a standard martingale theorem (Feller [4, pp. 234-238]),

rm n z (V - E(VijPi)) 0 w.p.lll.
m-" iJoe

Turning to proof of (2), we let P be a measure on the

reward eequence corresponding to our policy. For any

a> O,

S 11(t)fdP < a 5 [R(t)/aJ2 dP < H/a 0 as a -

Sg(t) >a

Thus, the random variables DE(t)) are uniformly integrable

so (1) implies (2). (Loive [1I], p. 163.) We have proved

the following.

THEOREM. Under assumptions 1, 2, and 3, the average

rewards from the above strategy satisfy

(i) P(im t-IR(t) - I 2 - I

(ii) Lim t-4 E[R(t)] - g
t-E

/ • .......I
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4. REMARKS

In the finite-state, finite-action case we could

sample actions on each transition rather than policies

on each cycle. By sampling actions on forced-choice

transitions we can obtain consistent estimates of the

parameters. One choice is the natural empirical estimators

which are consistent (Moore and Pyke [13]). On the free-

choice transitions, we follow the leader obtained by

substituting these estimates for the unknown parameters

ini the gain rate formula for stationary policies. The

estimated optimal policy can be calculated using a policy

improvement routine or linear program (Fox [5], Denardo

and Fox [21). The proof that g is attained is different

than the above one since we do not reduce the problem to

one state, but the number of policies being finite leads

to some simplifications. In the finite case, the existence

of a stationary optimal policy makes our policy optimal.

Intuition indicates a faster convergence rate for sampling

actions directly rather than just sampling policies.

Many problems studied in the literature satisfy our

assumptions; for example,

(i) replacement problems where we return to state I

(replace the item) whenever the state (or deterioration)

exceeds a certain level, to be determined.

t'4



(ii) queuing problems where we activate the server whenever

the queue length exceeds a certain level, to be deter-

mined. Heyman [8] gives conditions under which a policy

of this form is optimal for the M/G/l queue. To satisfy

our assumptions, we rule out policies that do not

activate the server when the queue length exceeds a

given ( large) number.

(iii.) inventory problems were we determine a reorder point

and a reorder level. See Hadley and Whitin [7, Chap. 8].

Lippman [101 mentions another example: the "streetwalker's

dilemmna," where the server must decide whether to accept a

given proposition or wait for a more desirable one. He

gives simple conditions under which our assumptions hold

and the optimal policy has the form: accept an offer if

and only if the ratio of expected reward to expected service

time exceeds a certain number.

ii,
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